
Linear systems – Final exam (solutions)
Final exam 2018–2019, Tuesday 18 June 2019, 9:00 – 12:00

Problem 1 (10 points)

To solve the initial value problem

tẋ(t)− x(t) = t3 sin(t2), x(
√
π) = 0, (1)

consider the differential equation for t > 0 and write it in the standard form

ẋ(t) =
1

t
x(t) + t2 sin(t2), (2)

which is achieved after dividing by t.
Computation of the integrating factor yields

F (t) =

∫
1

t
dt = ln |t|, (3)

such that

e−F (t) = e− ln |t| = eln
1
|t| =

1

|t|
=

1

t
, (4)

where again t > 0 is used. It now follows that

d
dt

{
t−1x(t)

}
= −t−2x(t) + t−1ẋ(t) =

tẋ(t)− x(t)

t2
, (5)

such that substitution of the differential equation gives

d
dt

{
t−1x(t)

}
=
t3 sin(t2)

t2
= t sin(t2). (6)

Hence,

x(t)

t
=

∫
t sin(t2) dt =

∫
1
2 sin(u) du = − 1

2 cos(u) + C = − 1
2 cos(t2) + C, (7)

where we have used the substitution u = t2. Consequently, the general solution to the differential
equation is given by

x(t) = − 1
2 t cos(t2) + Ct, (8)

which can be verified to satisfy the differential equation in (1) for all t ∈ R.
To solve the initial value problem, evaluate

x(
√
π) = − 1

2

√
π cos(π) + C

√
π = ( 1

2 + C)
√
π. (9)

As x(
√
π) = 0, this leads to

C = − 1
2 . (10)
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Problem 2 (3 + 3 + 6 = 12 points)

Consider the scalar differential equation

d3q

dt3
(t) + q2(t)

d2q

dt2
(t) + q(t)− q2(t) = u(t). (11)

(a) To write the system in state-space form, introduce the state

x =

 x1x2
x3

 =

 qq̇
q̈

 . (12)

The corresponding dynamics is then given by

ẋ =

 q̇
q̈...
q

 =

 x2
x3

−q2q̈ − q + q2 + u

 =

 x2
x3

−x21x3 − x1 + x21 + u

 , (13)

which we will denote as

ẋ(t) = f(x(t), u(t)) (14)

with

f(x, u) =

 x2
x3

−x21x3 − x1 + x21 + u

 . (15)

(b) After denoting ū = 0 and

x̄ =

 1
0
0

 , (16)

it is easily verified that

f(x̄, ū) = 0, (17)

i.e., (16) is an equilibrium point corresponding to ū = 0.

To find the other equilibria, solve 0 = f(x, ū) as

0 =

 x2
x3

−x21x3 − x1 + x21 + ū

 . (18)

The first two components immediately give x2 = 0 and x3 = 0, after which the third
component (with ū = 0) reads

0 = −x1 + x21 = x1(x1 − 1). (19)

This has the two solutions x1 = 1 and x1 = 0, of which the first leads to the equilibrium
(16). The second gives a new equilibrium, namely

x̄ = 0. (20)
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(c) To determine the linearization of (14) around the equilibrium (16), define the perturbations
from the equilibrium as

x̃ = x− x̄, ũ = u− ū, (21)

such that we have

˙̃x = f(x̄+ x̃, ū+ ũ). (22)

This leads to the linearized dynamics (by the Taylor expansion)

˙̃x =
∂f

∂x
(x̄, ū)x̃+

∂f

∂u
(x̄, ū)ũ. (23)

Then, computation of the Jacobian of f with respect to x gives

∂f

∂x
(x, u) =

 0 1 0
0 0 1

−2x1x3 − 1 + 2x1 0 −x21

 , (24)

leading to

∂f

∂x
(x̄, ū) =

 0 1 0
0 0 1
1 0 −1

 . (25)

Similarly, we obtain

∂f

∂u
(x̄, ū) =

 0
0
1

 . (26)

Finally, the substitution of the results (25) and (26) in (23) gives

˙̃x(t) =

 0 1 0
0 0 1
1 0 −1

 x̃(t) +

 0
0
1

 ũ(t). (27)
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Problem 3 (16 points)

Consider the linear system given by the transfer function

T (s) =
s

s4 + as3 + as2 + as+ 1
, (28)

where a ∈ R.
To determine the values of a for which the system is externally stable, recall that external

stability is characterized by the poles of the transfer function (28). These are the roots of the
denominator polynomial after common factors have been canceled.

As a first step, note that

p(s) = s, q(s) = s4 + as3 + as2 + as+ 1, (29)

have no common factors. Namely, the only root of p is at 0 and we have that q(0) = 1 regardless
of the value of a, i.e., p and q are coprime.

Thus, the linear system given by (28) is externally stable if and only if the polynomial q is
stable. Stability of q can be evaluated through the following Routh table.

s4 s3 s2 s1 s0

a× 1 a a a 1 q
1× a a

a2 a(a− 1) a2 a result of step 1
(a− 1)× a a− 1 a 1 after division by a: q′

a× a− 1 1
(a− 1)2 a(a− 2) a− 1 result of step 2: q′′

Note that a necessary condition for stability of q is that all coefficients have the same sign.
This immediately implies that

a > 0 (30)

is necessary for stability.
This condition also implies that the result of step 1 can be divided by a. Then, following the

same reasoning, a necessary condition of the result of step 1 to be stable is that

a > 1. (31)

Similarly, after step 2, we obtain the necessary condition

a > 2. (32)

However, the result of step 2 is a quadratic polynomial which is known to be stable if and only if
all coefficients have the same sign. This means that (32) is also a sufficient condition for stability
of the polynomial q′′.

Consequently, by the Routh-Hurwitz criterion, a necessary and sufficient condition for external
stability is that

a > 2. (33)
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Problem 4 (4 + 12 + 8 = 24 points)

Consider the linear system

Σ : ẋ(t) = Ax(t) +Bu(t),

with state x(t) ∈ R3, input u(t) ∈ R, and

A =

−1 −3 −3
1 1 1
−2 −5 0

 , B =

 1
0
−1

 .
(a) To determine controllability, compute

[
B AB A2B

]
=

 1 2 4
0 0 0
−1 −2 −4

 . (34)

It is clear that

rank

 1 2 4
0 0 0
−1 −2 −4

 = 1 < 3 = n, (35)

such that the system is not controllable.

(b) To find the desired transformation, first note that the reachable subspace is given as

W = im
[
B AB A2B

]
= im

 1 2 4
0 0 0
−1 −2 −4

 = span


 1

0
−1

 , (36)

such that

q1 =

 1
0
−1

 (37)

forms a basis for the reachable subspace W. This basis can be extended to a basis of R3 by
choosing, for example,

q2 =

 0
1
0

 , q3 =

 0
0
1

 , (38)

such that span{q1, q2, q3} = R3. After forming

T−1 =
[
q1 q2 q3

]
=

 1 0 0
0 1 0
−1 0 1

 , (39)

solving the linear system

AT−1 = T−1
[
A11 A12

0 A22

]
(40)

for A11, A12, and A22 leads to−1 −3 −3
1 1 1
−2 −5 0

 1 0 0
0 1 0
−1 0 1

 =

 2 −3 −3
0 1 1
2 −5 0

 =

 1 0 0
0 1 0
−1 0 1

 2 −3 −3
0 1 1
0 −8 −3

 . (41)
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Thus, we have that

A11 = 2, A12 =
[
−3 −3

]
, A22 =

[
1 1
−8 −3

]
. (42)

Similarly, solving

B = T−1
[
B1

0

]
, (43)

immediately leads to

B1 = 1. (44)

The pair (A11, B1) is controllable by construction.

Finally, the eigenvalues of A22 are obtained through

0 = det(λI −A) =

∣∣∣∣ λ− 1 −1
8 λ+ 3

∣∣∣∣ = (λ− 1)(λ+ 3) + 8 = λ2 + 2λ+ 5, (45)

which gives

λ = −1± 1
2

√
4− 4 · 5 = −1± 1

2

√
−16 = −1± 2i. (46)

Note that the matrices A12 and A22 are dependent on the choice of basis (38), but the
eigenvalues of A22 are not.

(c) Note that

T (A+BF )T−1 = TAT−1 + TBFT−1 =

[
A11 A12

0 A22

]
+

[
B1

0

]
FT−1. (47)

As σ(A22) ⊂ C−, it is sufficient to choose FT−1 of the form

FT−1 =
[
F1 0

]
, (48)

in which case

T (A+BF )T−1 =

[
A11 +B1F1 A12

0 A22

]
(49)

and

σ(A+BF ) = σ(T (A+BF )T−1) = σ(A11 +B1F1) ∪ σ(A22) ⊂ C− (50)

if and only if σ(A11 +B1F1) ⊂ C−. However, the latter is easily achieved as A11 and B1 are
scalar. Namely,

A11 +B1F1 = 2 + F1, (51)

such that any F1 < −2 is stabilizing.

To return to the original coordinates, solve the linear system

FT−1 =
[
F1 0

]
(52)

as

F

 1 0 0
0 1 0
−1 0 1

 =
[
F1 0 0

]
(53)

to obtain

F =
[
F1 0 0

]
. (54)
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Problem 5 (4 + 6 + 2 = 12 points)

Consider the linear system

ẋ(t) =

−8 −10 0
5 7 0
−6 −10 −2

x(t) +

 1
0
2

u(t), y(t) =
[

1 2 0
]
x(t).

(a) Compute  C
CA
CA2

 =

 1 2 0
2 4 0
4 8 0

 (55)

such that the unobservable subspace is given by

N = ker

 C
CA
CA2

 = ker

 1 2 0
2 4 0
4 8 0

 =


 2
−1
0

 ,
 0

0
1

 (56)

As dimN = 2 > 0, the system is not observable.

(b) To evaluate detectability, we first need to compute the eigenvalues of the system matrix. To
this end, note that the block lower-triangular form implies that

σ

−8 −10 0
5 7 0
−6 −10 −2

 = σ

([
−8 −10
5 7

])
∪ {−2}. (57)

The eigenvalues of the upper-left submatrix are computed as

0 = det(λI −A) =

∣∣∣∣ λ+ 8 10
−5 λ− 7

∣∣∣∣ = (λ+ 8)(λ− 7) + 50 = λ2 + λ− 6 = (λ− 2)(λ+ 3),

(58)

such that

σ

([
−8 −10
5 7

])
= {2,−3}. (59)

Thus, λ = 2 is the only unstable eigenvalue. Then, by the Hautus test,

rank

[
A− λI
C

]
= rank


−10 −10 0

5 5 0
−6 −10 −4
1 2 0

 = 3, (60)

such that the system is detectable.

(c) Yes, since the system is detectable.
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Problem 6 (16 points)

Show that, for any matrix G, the matrix pair (A − GC,C) is observable if and only if the
matrix pair (A,C) is observable.

only if (By contraposition). Let (A,C) be not observable. By the Hautus test, this means
that

rank

[
A− λI
C

]
< n, (61)

for some eigenvalue λ ∈ σ(A). As a result, there exists a nonzero vector v such that[
A− λI
C

]
v = 0. (62)

Stated differently, we have that Av = λv and Cv = 0. This then implies that[
A−GC − λI

C

]
v = 0, (63)

i.e., the matrix pair (A−GC,C) is not observable.
if. The converse follows similarly.
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